Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tropical elevation gradients support highly diverse assemblages, but competing hypotheses suggest either peak species richness in lowland rainforests or at mid‐elevations. We investigated scolytine beetles—phloem, ambrosia and seed‐feeding beetles—along a tropical elevational gradient in Papua New Guinea.Highly standardised sampling from 200 to 3700 m above sea level (asl) identified areas of highest and lowest species richness, abundance and other biodiversity variables.Using passive flight intercept traps at eight elevations from 200 to 3500 m asl, we collected over 9600 specimens representing 215 species. Despite extensive sampling, species accumulation curves suggest that diversity was not fully exhausted.Scolytine species richness followed a unimodal distribution, peaking between 700 and 1200 m asl, supporting prior findings of highest diversity at low‐to‐mid elevations.Alternative models, such as a monotonous decrease from lowlands to higher elevations and a mid‐elevation maximum, showed lesser fit to our data. Abundance is greatest at the lowest sites, driven by a few extremely abundant species. The turnover rate—beta diversity between elevation steps—is greatest between the highest elevations.Among dominant tribes—Dryocoetini, Xyleborini and Cryphalini—species richness peaked between 700 and 2200 m asl. Taxon‐specific analyses revealed distinct patterns:Euwallaceaspp. abundance uniformly declined with elevation, while other genera were driven by dominant species at different elevations.Coccotrypesand phloem‐feedingCryphalushave undergone evolutionary radiations in New Guinea, with many species still undescribed. Species not yet known to science are most likely to be found at lower and middle elevations, where overall diversity is highest.more » « lessFree, publicly-accessible full text available July 1, 2026
-
null (Ed.)Multimodal communication is common in the animal kingdom. It occurs when animals display by stimulating two or more receiver sensory systems, and often arises when selection favors multiple ways to send messages to conspecifics. Mechanisms of multimodal display behavior are poorly understood, particularly with respect to how animals coordinate the production of different signals. One important question is whether all components in a multimodal display share an underlying physiological basis, or whether different components are regulated independently. We investigated the influence of androgen receptors (ARs) on the production of both visual and vocal signal components in the multimodal display repertoire of the Bornean rock frog (Staurois parvus). To assess the role of AR in signal production, we treated reproductively active adult males with the antiandrogen flutamide (FLUT) and measured the performance of each component signal in the multimodal display. Our results show that blocking AR inhibited the production of multiple visual signals, including a conspicuous visual signal known as the “foot flag,” which is produced by rotating the hind limb above the body. However, FLUT treatment caused no measurable change in vocal signaling behavior, or in the frequency or fine temporal properties of males’ calls. Our study, therefore, suggests that activation of AR is not a physiological prerequisite to the coordination of multiple signals, in that it either does not regulate all signaling behaviors in a male’s display repertoire or it does so only in a context-dependent manner.more » « less
An official website of the United States government
